jueves, 12 de noviembre de 2015

4.1.2 Sistemas de ecuaciones lineales: consistentes, inconsistentes y su representación paramétrica del conjunto solución.

Tipos de sistemas

AL Sistema.svg
Los sistemas de ecuaciones se pueden clasificar según el número de soluciones que pueden presentar. De acuerdo con ese caso se pueden presentar los siguientes casos:
  • Sistema compatible si tiene solución, en este caso además puede distinguirse entre:
    • Sistema compatible determinado cuando tiene una única solución.
    • Sistema compatible indeterminado cuando admite un conjunto infinito de soluciones.
  • Sistema incompatible si no tiene solución.
Quedando así la clasificación:
Los sistemas incompatibles geométricamente se caracterizan por (hiper)planos o rectas que se cruzan sin cortarse. Los sistemas compatibles determinados se caracterizan por un conjunto de (hiper)planos o rectas que se cortan en un único punto. Los sistemas compatibles indeterminados se caracterizan por (hiper)planos que se cortan a lo largo de una recta [o más generalmente un hiperplano de dimensión menor]. Desde un punto de vista algebraico los sistemas compatibles determinados se caracterizan porque el determinante de la matriz es diferente de cero:

   \mathrm{Sistema \; compatible \; determinado}
   \Longleftrightarrow \det(\mathbf{A})
   \ne 0

Algoritmo para determinar si un sistema es compatible

Podemos averiguar si un sistema es o no compatible mediante el Teorema de Rouché-Frobenius que establece que un sistema de ecuaciones lineales es compatible sólo si el rango de su matriz ampliada coincide con el de su matriz de coeficientes. Supongamos que el sistema es compatible. Si el valor común de los rangos de las matrices coincide con el número de variables, el sistema es compatible determinado; en caso contrario, es compatible indeterminado.

Sistemas compatibles indeterminados

Un sistema sobre un cuerpo K es compatible indeterminado cuando posee un número infinito de soluciones. Por ejemplo, el siguiente sistema:

   \left \{
      \begin{matrix}
         x  & + 2y & = 1 \\
         2x & + 4y & = 2
      \end{matrix}
   \right .
Tanto la primera como la segunda ecuación se corresponden con la recta cuya pendiente es -0,5 y que pasa por el punto (-1,1), por lo que ambas intersecan en todos los puntos de dicha recta. El sistema es compatible por haber solución o intersección entre las rectas, pero es indeterminado al ocurrir esto en infinitos puntos.
  • En este tipo de sistemas, la solución genérica consiste en expresar una o más variables como función matemática del resto. En los sistemas lineales compatibles indeterminados, al menos una de sus ecuaciones se puede hallar como combinación lineal del resto, es decir, es linealmente dependiente.
  • La condición necesaria para que un sistema sea compatible indeterminado es que el determinante de la matriz del sistema sea cero al igual que el rango de la matriz ampliada y menor al número de incógnitas(y por tanto uno de sus autovalores será 0):

   \mathrm{sistema \; compatible \; indeterminado}
   \Rightarrow \det \mathbf{A} = 0
  • De hecho, de las dos condiciones anteriores se desprende, que el conjunto de soluciones de un sistema compatible indeterminado es un subespacio vectorial. Y la dimensión de ese espacio vectorial coincidirá con la multiplicidad geométrica del autovalor cero.

Sistemas incompatibles

De un sistema se dice que es incompatible cuando no presenta ninguna solución. Por ejemplo, supongamos el siguiente sistema:

   \left \{
      \begin{matrix}
          x & + 2y & = 4 \\
         2x & + 4y & = 7
      \end{matrix}
   \right .
Las ecuaciones se corresponden gráficamente con dos rectas, ambas con la misma pendiente, Al ser paralelas, no se cortan en ningún punto, es decir, no existe ningún valor que satisfaga a la vez ambas ecuaciones.
Matemáticamente un sistema de estos es incompatible cuando el rango de la matriz del sistema es inferior al rango de la matriz ampliada. Una condición necesaria para que esto suceda es que el determinante de la matriz del sistema sea cero:

   \mathrm{sistema \; incompatible}
   \Rightarrow \det \mathbf{A} = 0

Bibliografía

Wikipedia. (s.f.). Sistema de ecuaciones lineales. Recuperado el 29 de 11 de 2015, de Wikipedia: https://es.wikipedia.org/wiki/Sistema_de_ecuaciones_lineales

 

No hay comentarios:

Publicar un comentario